HOW TOCOUNT ATOMS

Background Information:

- subscripts - little numbers that tell how many atoms there are (ex: $\ln 3 \mathrm{H}_{2} \mathrm{O}$, the I_{2} is the subscript)
- coefficients - regular-sized numbers that tell how many molecules there are (ex: $\ln 3 \mathrm{H}_{2} \mathrm{O}$, the $\mathbf{3}$ is the coefficient)

Example: $3 \mathrm{H}_{2} \mathrm{O}$

- The subscript 2 in the example above comes after the H . This means there are two H 's (hydrogen atoms) in each molecule.
- The coefficient $\mathbf{3}$ shows that there are three of the $\mathrm{H}_{2} \mathrm{O}$ molecules.

When counting atoms in the example $\left(3 \mathrm{H}_{2} \mathrm{O}\right)$, we can look at the atoms this way [since there are 3 of the $\mathrm{H}_{2} \mathrm{O}$ molecules]: (3 water molecules each with 2 hydrogen and 1 oxygen)

- So now, we can count the number of H's and the number of O's.

Thus, $3 \mathrm{H}_{2} \mathrm{O}$ has 6 hydrogen atoms and 3 oxygen atoms.

However, drawing out each equation is not practical, so...

Although the 1 is usually not written, $3 \mathrm{H}_{2} \mathrm{O}$ can be written as $3 \mathrm{H}_{2} \mathrm{O}_{1}$. (In other words, $3 \mathrm{H}_{2} \mathrm{O}$ and $3 \mathrm{H}_{2} \mathrm{O}_{1}$ are the same thing.) The number of atoms can be counted without drawing everything out by multiplying the coefficient by all the subscripts in the molecule (you get the number of atoms). So with the case of $3 \mathrm{H}_{2} \mathrm{O}_{1}$, we can multiply the 3 with the ${ }_{2}$ to find that there are 6 H 's. Then we can multiply the 3 with the ${ }_{1}$ to find that there are 30 's.

Step 1: Write the chemical formula
Step 2: List all the atoms
Step 3: Count the number of atoms of each element in ONE molecule.
Step 4: Multiply the number of atoms of each by the coefficient.
Step 5: Make sure you answer makes sense.

PRACTICE TIME: Count the number of each type of atom in each molecule.
$\mathrm{P}_{4}+\mathrm{O}_{2}$
$4 \mathrm{P}_{2} \mathrm{O}_{3}$
P 4
P 2*4=8
02
O $3 * 4=12$

Two More Practice Example

$6 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(Ethanol)

C- 2*6=12
H - 6*6=36
O- 1*6=6
$4 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(Glucose - Sugar)
C - $6 * 4=24$
H- 12*4=48
O-6*4=24

